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Abstract

Atrial fibrillation (AF) significantly contributes to the incidence of strokes. Screening for AF enhances its detection and
effective management. However, universal AF screening in rural areas poses a challenge. This study evaluates the cost-
effectiveness of artificial intelligence-enabled 12-lead electrocardiography (AI-ECG) model for AF screening in rural
communities.

This cost-effectiveness analysis targeted individuals aged 65 or older, employing a lifelong decision analytic Markov
model. AI-ECG model, trained and validated at three Taiwanese hospitals with 285,108 patients, achieved sensitivities
of 97.8% and specificities of 99.1%. The study incorporated costs and efficacy of anticoagulant treatments, health status
utilities, and clinical variables, derived from literature and Taiwan’s epidemiological data. Outcomes were expressed in US
dollars per quality-adjusted life year (QALY). The base-case analysis contrasted AI-ECG screening performed by nurses
and physician evaluations using standard 12-lead ECGs against no screening, incorporating uncertainty through probabi-
listic sensitivity analysis. Results were compared with one GDP per capita in Taiwan (~$32,327 per QALY), a commonly
cited willingness-to-pay (WTP) benchmark.

Both AI-ECG and physician-led screenings were costlier yet more effective compared with no screening. Although both
methods showed comparable effectiveness in detecting AF and in QALY's gained, AI-ECG screening was less expensive
($141 versus $196). Based on 5,000 Monte Carlo simulations, Al-based screening is more cost-effective at lower thresh-
olds ($4,349 to $6,132 per QALY), while physician-led screening becomes preferable beyond $6,132 per QALY. Both
strategies remained cost-effective relative to the WTP benchmark. Sensitivity analyses further identified the referral rate
following a positive AI-ECG screening as a critical determinant of its cost-effectiveness.

AI-ECG screening for AF is a cost-effective alternative, particularly suitable for areas with limited medical resources.
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Introduction

Atrial fibrillation (AF) is the most common cardiac
arrhythmia worldwide, with its prevalence increasing
alongside an aging population. AF, often asymptomatic in
its early stages, is associated with a heightened risk of
stroke, heart failure, and mortality [1, 2]. Current guide-
lines endorse comprehensive AF management, particu-
larly the use of oral anticoagulants for stroke prevention,
which have been shown to reduce the risk of stroke by
60% and mortality by 25% [3, 4]. Screening for AF can
enhance its detection and facilitate early management.
Although the universal clinical benefits of AF screening
are not firmly established [5], screening is considered rea-
sonable in individuals aged 65 years and older or those
with specific stroke risk factors, such as heart failure,
hypertension, and diabetes mellitus [3, 4].

AF screening can be conducted through various meth-
ods, including pulse checks, automated blood pressure
monitors, wearable devices, and single to multiple leads
electrocardiograms (ECGs) [3]. These screening tools
have demonstrated cost-effectiveness in different contexts
[6]. However, in rural areas, challenges to AF screening
are prevalent, often leading to inferior cardiovascular
outcomes [7-9]. Limited access to medical resources
and a scarcity of healthcare professionals render oppor-
tunistic AF screening during regular medical visits less
accessible [9]. Systematic screening for all at-risk indi-
viduals in rural settings can be costlier, and the relatively
low yield of screening tools might diminish participa-
tion. With AF occasionally presenting as paroxysmal AF,
repeat screenings, which can quadruple detection rates,
are challenging to implement in rural areas [10]. These
barriers highlight the urgent need for an effective and
economical method for AF screening in rural areas with
limited medical resources.

Deep learning, a subfield of artificial intelligence
(AI), has exhibited remarkable accuracy in interpreting
ECGs, comparable to the expertise of cardiologists [11].
Studies have shown that Al-enabled ECG can enhance
the diagnosis of left ventricular dysfunction and may
be cost-effective for widespread screening [12-14]. Al-
guided AF screening has also increased the detection of
unrecognized atrial fibrillation [15]. Despite the potential
of Al-enabled ECG for AF screening in rural areas, its
cost-effectiveness compared with traditional physician-
led screening requires further investigation. This study
assesses the cost-effectiveness of Al-enabled 12-lead
ECG (AI-ECQG) relative to physician-led AF screening in
a rural community.
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Methods
Development of AlI-ECG Model for AF Detection

The algorithm designed to detect AF from 12-lead ECGs
underwent training using data from 155,122 patients,
encompassing 345,619 ECGs, of which 16,604 were diag-
nosed with AF and 329,015 were AF-negative, sourced from
a medical center for development and fine-tuning purposes.
An 82-layer convolutional neural network was employed,
with technical specifications paralleling those outlined in
our previous study [16], detailed further in the Supplemen-
tary Methods. ECGs received annotations based on corre-
sponding reports, covering sinus rhythm, AF, atrial flutter,
and other rhythms, as provided by cardiologists. Here, the
AF category included both AF and atrial flutter.

For validation purposes, an internal validation set from the
medical center, an external validation set and an isolated vali-
dation set from two additional hospitals (a community hos-
pital and one on an isolated island) were utilized, as depicted
in Supplementary Fig. 1. Supplementary Table 1 details the
baseline characteristics of each dataset. The AI-ECG mod-
el’s performance was characterized by sensitivities ranging
from 97.3% to 98.5%, specificities from 98.2% to 99.1%, and
area under the receiver operating characteristic curve scores
between 0.9955 and 0.9986 across the three validation sets, as
illustrated in Supplementary Fig. 2. The model’s positive pre-
dictive values varied from 69.7% to 77.0%, while maintain-
ing a negative predictive value of 99.9%. These performance
metrics are consistent with those reported in previous studies
investigating Al models for AF detection [17, 18]. This study
received approval from the Institutional Review Board at Tri-
Service General Hospital, Taipei, Taiwan (C202105049).

Economic Model and Assumptions

To assess the cost-effectiveness of AI-ECG screening for
AF compared with physician-led screening or no screening
in a rural community, we utilized a decision analytic model
featuring Markov processes. This model simulated a cohort
of 65-year-old patients, tracking them over their remain-
ing projected lifetime. Given the prevalence of the disease,
risk of stroke, and health checkup policies in Taiwan, our
analysis concentrated on individuals aged 65 as the base-
case scenario. To further assess the cost-effectiveness of
screening strategies in older age groups, additional analyses
were conducted using screening ages of 75 and 85 years for
comparison. The structure of this cost-effectiveness analysis
draws upon methodologies established in previous literature
[19-21], adopting the perspective of the healthcare payer.
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The decision analytic model comprises a decision tree and
a Markov model.

The short-term decision tree, depicted in Fig. 1A,
evaluates the performance of AI-ECG screening for AF
compared with physician-led screening or no screening.
Literature suggests that paroxysmal AF may not be consis-
tently detected through a single ECG screening. Research
indicates that approximately 1.4% of the population aged
65 without prior AF diagnosis could be identified with AF
via a single ECG screening [22]. Accordingly, a detection
rate of 1.4% for 65-year-old individuals was integrated into
the model. A positive Al screening result leads to a refer-
ral for a cardiologist outpatient visit to confirm true-positive
cases or exclude false-positive AF instances by reviewing
the screening ECG. Referral rates may vary substantially
depending on healthcare resources and geographic barri-
ers. Based on previous studies, a referral rate of 82% was
applied in the model [23, 24]. Participating physicians were
assumed to be adequately trained, proficient in AF identifi-
cation, and would diagnose AF using a 12-lead ECG with

Fig. 1 Schematic of the decision A
analytic model. (A) The first part
depicts a decision tree represent-
ing the screening outcomes. (B)
The second part features a Mar-
kov structure simulating patients’
costs and effects over the ana-
lyzed horizon. Abbreviations: Al,
artificial intelligence; AF, atrial

No screen

Individuals aged

X X ¢ 65 or older Screen by physician
fibrillation; ECG, electrocardio-
gram; GI, gastrointestinal; ICH,
intracranial hemorrhage
Screen with AI-ECG

Treated, AF
Untreated, AF

Gl Bleeding

100% accuracy, in line with a cardiologist’s capability at the
same detection rate.

The hypothetical cohort transitions to the Markov
model, entering one of three health states post-screening:
(1) treated for AF if positively screened using the AI-ECG
model and confirmed by a referral cardiologist, or by a
frontline physician (true positive); (2) untreated for AF
if the AI-ECG model failed to detect an existing condi-
tion (false negative); or (3) untreated without AF if the
condition was absent. As illustrated in Fig. 1B, the Mar-
kov model includes four health states: stable AF; post-
ischemic stroke; post-intracranial hemorrhage (ICH); and
death. Both treated and untreated individuals for AF might
experience gastrointestinal (GI) bleeding in the stable AF
health state. Subsequently, individuals with AF could prog-
ress to experiencing a stroke or ICH. Except in the event
of death, individuals would remain in the post-ischemic
stroke or post-ICH states. Transitions to a deceased state
could occur annually from any health condition, adhering
to specific transition probabilities.

Untreated, AF

No AF
Untreated, No AF
Physician screen “+” 4 Treated, AF
AF !
Physician screen “-” 1 Uirirested, &F
No AF Referral and Cardiologist confirm “+”
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Health Outcomes, Costs and Discounting

Table 1 presents estimated values for various elements
within the model, including AI-ECG model performance,
health outcomes, costs, utilities, and other factors. For Al-
ECG model performance in AF detection, data from the
internal validation cohort was applied. The sensitivity of the
AI-ECG model for detecting AF was 97.8% (standard error
[SE]: 0.0035), and the specificity was 99.1% (SE: 0.0004).
The prevalence of AF in 65-year-old individuals was set
at 2.5%, in accordance with published literature [25]. The
model assumes that simulated individuals receive AF treat-
ment using non-vitamin K anticoagulants (NOACs), namely
apixaban, dabigatran, edoxaban, and rivaroxaban following
physician evaluation. To reflect real-world practice, pre-
scription rates for each NOAC were incorporated: 42.3% of
AF patients received no anticoagulant therapy, while 17.7%
received edoxaban, 15.0% apixaban, 15.0% rivaroxaban,
and 10.0% dabigatran [37].

Annual transition probabilities to stroke and treatment-
related adverse events, including ICH and GI bleeding,
for both treated and untreated patients, along with their
utility scores, were primarily derived from data in four
crucial trials on NOACs involving Asian populations,
meta-analyses, and related literature [26—30]. Other bleed-
ing events, such as those involving soft tissue or muscle,
genitourinary sites, retroperitoneal spaces, or the respira-
tory tract, were not included in the model because they are
infrequently reported and have a low incidence [38, 39].
Annual risks of ischemic stroke in patients on warfarin or
NOAC:S, as reported in clinical trials, ranged from 0.8%
to 2.2% [26-29]. Conversely, the annual risk of ischemic
stroke in AF patients not receiving oral anticoagulants was
higher, at 5.1%, based on a meta-analysis comparing the
risk reduction in AF patients with and without anticoagu-
lant therapy[30]. The average CHA,DS,-VASc score for
AF patients in Taiwan was 4.14, reflecting the baseline
stroke risk in the model [25]. The risks of GI bleeding and
ICH in AF patients not on oral anticoagulants were simi-
lar to those on NOACs in our model, informed by lower
incidences of bleeding events in specific NOAC trials [26,
27]. In the event of a stroke or ICH, cases were classi-
fied as mild (independent), moderate (moderate disability),
severe (totally dependent), or fatal, according to functional
severity, as their incidence, medical costs, and utility dif-
fer substantially. Real-world incidence data for stroke and
ICH were incorporated to better reflect actual clinical con-
ditions [31]. Transition probabilities from post-screening
to death were calculated using age and sex-specific sur-
vival rates from the Taiwan life Table [34].

The cost of an AI-ECG screening was set equal to a stan-
dard electrocardiogram ($4.96) in the base case, increasing
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up to five times in the sensitivity analysis due to uncer-
tainties in pricing AI-ECG screening. The costs of health
resources, including cost per outpatient visit and annual cost
of outpatient AF management were calculated based on the
Taiwan National Health Insurance, as presented in Table 1.
Both cost and effectiveness were discounted at a rate of 3%,
accounting for the time preference that places a higher value
on costs incurred or effectiveness gains realized now rather
than later.

Analytical Methods

One-way deterministic sensitivity analyses were per-
formed to evaluate the model’s robustness in relation to
the performance of the Al, the referral rate after AI-ECG
screening, the costs associated with AI-ECG screening,
nurse-conducted AI-ECG screenings, and outpatient AF
management. Additionally, to thoroughly examine covari-
ate uncertainty, a probabilistic sensitivity analysis was
performed. For each input variable, probability distri-
butions were assigned, incorporating the mean values,
standard errors, and distribution types. Probabilities and
utilities employed beta distributions, appropriate for val-
ues between 0 and 1. Costs were modeled using gamma
distributions, which are suitable for representing non-neg-
ative, right-tailed distributions typically associated with
cost modeling.

Point estimates for the incremental cost-effectiveness
ratio (ICER) were generated through a Monte Carlo sim-
ulation encompassing 5,000 iterations, drawing param-
eters from their respective probability distributions. In
line with the WHO guidelines and local expert opinion,
1 Gross Domestic Product (GDP) per capita was consid-
ered a suitable threshold for assessing cost-effectiveness
in Taiwan [40]. Accordingly, the willingness-to-pay
(WTP) threshold was set at $32,327 per quality-adjusted
life year (QALY) gained, based on Taiwan’s published
2023 GDP per capita. The percentage of iterations where
AI-ECG screening achieved an ICER below the $32,327
WTP threshold was used to construct the cost-effective-
ness acceptability curve, indicating the likelihood of Al-
ECG screening being a cost-effective strategy compared
with its alternatives.

The model was developed and analyzed using TreeAge
Pro version 2024. Costs were converted to USD based on
the exchange rate from the Bank of Taiwan as of Janu-
ary 16, 2023. To demonstrate compliance with established
reporting standards, the Consolidated Health Economic
Evaluation Reporting Standards (CHEERS) checklist
was employed, ensuring adherence to the key elements
specified in the CHEERS guidelines [41] (Supplementary
Table 2).
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Table 1 Summary of model and parameter estimates

Factor Estimate (SE) Distribution modelled Source
Atrial fibrillation Uniform
Prevalence Chao et al. [25]

Age 60-69 0.025

Age 70-79 0.051

Age 80-89 0.059

Age>90 0.063
Annual incidence Chao et al. [25]

Age 60-69 0.0021

Age 70-79 0.0061

Age 80-89 0.0139

Age>90 0.0254
Detection rate 0.014 Lowres et al. [22]
Probabilities and outcomes
Sensitivity of Al 0.978 (0.0035) Beta
Specificity of Al 0.991 (0.0004) Beta
Referral rate after Al screen 0.82 Uniform Chen at al. and Orchard et al. [23, 24].
Risk of stroke Beta
- Apixaban 0.021 (0.005) Asian ARISTOTLE [26]
- Dabigatran 0.016 (0.003) Asian RE-LY [27]
- Edoxaban 0.008 (0.003) Asian ENGAGE AF-TIMI 48 [28]
- Rivaroxaban 0.021 (0.007) Asian ROCKET AF [29]
- Untreated 0.051 (0.007) Hart et al. [30]

Severity of stroke

- Mild (treated; untreated)
- Moderate

- Severe

- Fatal

Risk of ICH

- Apixaban

- Dabigatran

- Edoxaban

- Rivaroxaban

- Untreated

Severity of ICH

- Mild

- Moderate

- Severe

- Fatal

Risk of GI bleeding

- Apixaban

- Dabigatran

- Edoxaban

- Rivaroxaban

- Untreated

Mortality rate

- Apixaban

- Dabigatran

- Edoxaban

- Rivaroxaban

- Untreated

Annual mortality post-stroke
Annual mortality post-ICH
Age-specific mortality
Utility

Utility score for having AF

Uniform

0.580; 0.400
0.160; 0.180
0.020; 0.080
0.250; 0.350
Beta
0.007 (0.003)
0.003 (0.001)
0.007 (0.003)
0.006 (0.003)
0.008 (0.001)

Uniform

0.080; 0.140
0.090; 0.150
0.320; 0.390
0.520; 0.330
Beta
0.020 (0.004)
0.025 (0.004)
0.029 (0.007)
0.034 (0.008)
0.026 (0.002)
Beta
0.029 (0.005)
0.044 (0.005)
0.017 (0.005)
0.048 (0.026)
0.049 (0.005)
0.260 (0.003) Beta
0.181 (0.012) Beta
Taiwan Life Table [34]
Beta
0.81 (0.067)

Chang et al. [31]

Chang et al. [31]

Chang et al. [31]

Chang et al. [31]

Asian ARISTOTLE [26]
Asian RE-LY [27]

Asian ENGAGE AF-TIMI 48 [28]
Asian ROCKET AF [29]
Hart et al. [30]

Chang et al. [31]

Chang et al. [31]

Chang et al. [31]

Chang et al. [31]

Chang et al. [31]

Asian ARISTOTLE [26]

Asian RE-LY [27]

Asian ENGAGE AF-TIMI 48 [28]
Asian ROCKET AF [29]

Hart et al. [30]

Asian ARISTOTLE [26]

Asian RE-LY [27]

Asian ENGAGE AF-TIMI 48 [28]
Asian ROCKET AF [29]

Hart et al. [30]

Fang et al. [32]

Ponamgi et al. [33]

Sullivan et al. [35]

@ Springer
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Table 1 (continued)

Factor Estimate (SE) Distribution modelled Source
Decrement for GI bleeding 0.181 (0.013) Sullivan et al. [35]
Utility score for mild stroke/ICH 0.750 (0.040) Gage et al. [36]
Utility score for moderate stroke/ICH 0.390 (0.036) Gage et al. [36]

Utility score for severe stroke/ICH
Costs (2022 USD)

Screening with AI-ECG model
Cost per outpatient visit

Annual cost of outpatient AF management
Cost per GI bleeding event
Screening by a physician & nurse
Screening by a nurse

Annual costs of NOAC treatment
- Apixaban

- Dabigatran

- Edoxaban

- Rivaroxaban

Cost for stroke, one-time event

- Mild

- Moderate

- Severe

- Fatal

Cost for ICH, one-time event

- Mild

- Moderate

- Severe

- Fatal

Annual costs for post-stroke

- Mild

- Moderate

- Severe

Annual costs for post-ICH

- Mild

- Moderate

- Severe

Discounting

Costs

Outcomes

0.110 (0.024)

4.92
13.11

65.57 (32.79)
7,371 (3,686)
17.08

2.05

755
1,050
944
744

2,380 (1,190)
12,427 (6,214)
17,208 (8,604)
8,820 (4,410)

6,342.3 (3,171)
11,416 (5,708)
15,222 (7,611)
7,404 (3,702)

1,098 (549)
1,795 (898)
2,016 (1,008)

844 (422)
1,756 (878)
2,379 (1,190)

3%
3%

Gage et al. [36]

Uniform NHIRD
Uniform NHIRD
Gamma NHIRD
Gamma NHIRD
Uniform NHIRD; assumption

Uniform NHIRD; assumption
Uniform
NHIRD
NHIRD
NHIRD
NHIRD
Gamma
Chang et al. [31]; NHIRD
Chang et al. [31]; NHIRD
Chang et al. [31]; NHIRD
Chang et al. [31]; NHIRD
Gamma
Chang et al. [31
Chang et al. [31
Chang et al. [31
Chang et al. [31

: NHIRD
: NHIRD
: NHIRD
; NHIRD

—_— e

Gamma
Chang et al. [31]; NHIRD
Chang et al. [31]; NHIRD
Chang et al. [31]; NHIRD
Gamma
Chang et al. [31]; NHIRD
Chang et al. [31]; NHIRD
Chang et al. [31]; NHIRD
Uniform Assumption

Uniform Assumption

Abbreviations: Al, artificial intelligence; AF, atrial fibrillation; GI, gastrointestinal; ICH, intracranial hemorrhage; NHIRD, National Health

Insurance Research Database of Taiwan

Results

Base-Case Analysis

Figure 2A illustrates the number of AF patients detected
among every 5,000 individuals, offering a visual comparison
between the screened and non-screened groups over their
remaining lifetimes. This figure highlights the diminishing
gap in detected AF cases over time following the screening.
In Fig. 2A, the orange and blue lines represent the num-
bers of AF patients identified through physician-led screen-
ing and AI-ECG screening, respectively, while the grey line
indicates the count in the absence of screening. Initially,

@ Springer

physician screening identified 74 patients with AF, whereas
AI-ECG screening identified 59 patients. The no-screening
arm reflected the natural incidence of AF without inter-
vention. As the model included only living patients, these
numbers gradually declined in the later years of the simu-
lation as some of the identified AF patients died. Overall,
the simulation reveals that both AI-ECG and physician-led
screenings result in earlier and more frequent AF detection.

Figure 2B details the annual costs for both the AI-ECG
and physician-led screening groups. Notably, the costs
associated with physician-led screening are higher, largely
due to the upfront costs inherent in this approach. The
annual cost declined markedly approximately 17 years
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Fig. 2 (A) Number of identified AF patients per 5,000 patients in Al-
ECG screening, screening by physician, and non-screening groups
during 30 years after screening. (B) Annual cost in USD of 5,000
patients undergoing AF screening with A-ECG screening compared
with screening by physician. The costs over time were higher for the
screening by physician groups due to the physician’s upfront cost.
Abbreviations: AI-ECG, artificial intelligence-enabled electrocardio-
gram; AF, atrial fibrillation

after screening, reflecting the reduced survival rate of par-
ticipants beyond their 80s. Over the lifetime horizon of the
simulation, the total costs related to AF management for the
cohort of 5,000 patients were approximately $7.0 million
for the AI-ECG group, compared with $9.7 million for the
physician-led group.

The age pattern in the no-screening arm (rising detections
from the late 60 s to the mid-70s and tapering thereafter with
mortality) is consistent with published epidemiology of AF
in older Asian populations [25, 34]. In addition, the model’s
relative findings, with earlier yield and higher upfront costs
for physician-led screening and similar detection at lower
cost for AI-ECG screening, align with prior AF screening
models that compared handheld single-lead ECG strate-
gies with no screening [42]. These consistencies support the
external face validity of our model.

In the base-case scenario, outlined in Table 2, screen-
ings conducted by AI-ECG and physicians were more
expensive but also more effective than no screening. The
average cost per patient was higher for those screened
and referred for AF detection through AI-ECG screen-
ing compared with no screening ($141 versus $39). This
led to an incremental gain of 0.02 QALYs, resulting in a
relatively low ICER of $4,349. Although both strategies
showed comparable effectiveness, AI-ECG screening
was less costly than physician-led screening ($141 versus
$196). In the comparison of AI-ECG screening with phy-
sician-led screening, AI-ECG screening was associated
with an average cost reduction of $55 per patient and a
minor difference in quality-adjusted life expectancy (0.009
QALYs gained per patient), leading to an ICER of $6,132.
These results indicate that both AI-ECG and physician-led
screenings are more effective than no screening, with Al-
ECG screening proving to be cost-effective across various
ages ranging from 65 to 85 years, as detailed in Table 2. As
the screening age increased to 75 and 85 years, both incre-
mental QALYs and subsequent medical costs after screen-
ing decreased. Screening with AI-ECG at age 75 yielded a
higher ICER compared with screening at 65 or 85, primar-
ily due to the relatively smaller QALY gain in relation to
the associated medical costs.

Table 2 Cost, effect, and incremental cost-effectiveness ratio of screening with AI-ECG versus screening by physician and no screening for atrial

fibrillation according to different age groups

Strategy Cost ($) QALY Sequential ICER

Mean 95% Crl Mean 95% Crl Mean 95% Crl
Starting age=65 years old (base-case)
No screening 39 3249 16.49 16.47-16.51
Screening with AI-ECG and referral 141 131-153 16.52 16.49-16.54 4349 3318-6214
Screening by physician 196 184-210 16.53 16.50-16.55 6132 5031-7862
Starting age="75 years old
No screening 53 43-64 8.65 8.61-8.68
Screening with AI-ECG and referral 123 114-134 8.66 8.62-8.69 6095 46248868
Screening by physician 169 159-181 8.66 8.63-8.69 9225 7689-11,674
Starting age =285 years old
No screening 25 21-31 4.60 4.58-4.62
Screening with AI-ECG and referral 69 65-75 4.61 4.59-4.63 5966 4711-8027
Screening by physician 108 103-113 4.61 4.59-4.63 11,229 9648-13,902

Abbreviations: AI-ECG, artificial intelligence-enabled electrocardiogram; Crl, credible interval; ICER, incremental cost-effectiveness ratio;

QALY, quality-adjusted life years

@ Springer
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Fig. 3 Tornado diagram for the
deterministic sensitivity analyses
of physician-led screening for
atrial fibrillation vs. AI-ECG
screening. Base case: $6132.
The red bar corresponds to the
upper range, and the blue bar
with the lower range of an input.

Abbreviations: AI-ECG, artificial I-
intelligence-enabled electrocar-

diogram; AF, atrial fibrillation; .I
ICER, incremental cost-effec-
tiveness ratio; ICH, intracranial
hemorrhage heart failure; WTP, I
willingness-to-pay
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Fig. 4 Cost-effectiveness acceptability curves. The blue curve repre-
sents the probability of AI-ECG screening being cost-effective, while
the red and yellow lines correspond to the probabilities for physician-
led screening and no screening, respectively. Abbreviations: AI-ECG,
artificial intelligence-enabled electrocardiogram

Sensitivity Analyses

Figure 3 presents the outcomes of deterministic sensitiv-
ity analyses that compare the cost-effectiveness of AI-ECG
screening with physician-led screening. To address uncer-
tainties related to healthcare service costs and healthcare
professionals’ wages in various settings, the costs in the
model were adjusted to be five times higher than in the base
case. The ICERs for physician-led screening relative to Al-
ECG screening were found to be sensitive to variations in
referral rate after AI-ECG screening. The analysis revealed
that as the referral rate increases to 100%, physician-led
screening becomes less likely to be cost-effective under the
established WTP threshold of $32,327, which corresponds
to one GDP per capita in Taiwan. Other factors influencing
the cost-effectiveness of AI-ECG screening to physician-led
screening or no screening were also examined in the sensi-
tivity analyses, with results displayed in Fig. 3, Supplemen-
tary Tables 3 and Supplementary Fig. 3.
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To further understand the uncertainty of the results, a
probabilistic sensitivity analysis was conducted with 5,000
iterations. The outcomes of this analysis are illustrated in
the cost-effectiveness acceptability curves shown in Fig. 4.
These curves indicate that AI-ECG screening is the most
cost-effective strategy at lower cost-effectiveness thresh-
olds, ranging from $4,349 to $6,132 per QALY gained.
AI-ECG screening for AF is a cost-effective alternative, par-
ticularly suitable for areas with limited medical resources.

Discussion

This study evaluates the cost-effectiveness of Al-enabled
screening compared with physician-led screening for elderly
individuals in rural areas, focusing on AF detection. Our
findings suggest that Al screening is more cost-effective for
individuals aged 65, with the cost per QALY gained ranging
from $4,349 to $6,132. Sensitivity analyses reveal consis-
tent cost-effectiveness of AI-ECG screening across various
age groups. A key factor influencing the overall value of Al-
ECG screening is the referral rate following a positive test
result. The study highlights the potential of AI-ECG screen-
ing in reducing healthcare disparities.

The debate over AF screening strategies continues,
particularly regarding their applicability to specific popu-
lations. Opportunistic screening methods during routine
medical visits are generally preferred over systematic
approaches, primarily due to their cost-effectiveness and
comparable effectiveness, as shown in previous studies [43,
44]. However, the burden of undetected AF might be more
pronounced in rural areas, where routine detection is less
common [45]. Systematic screening in these areas improves
access for asymptomatic, at-risk individuals. A survey indi-
cated that general physicians in rural areas are willing to
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participate in AF screening, provided they have additional
time and staff [46]. These findings highlight the practical-
ity of AI-ECG model as an efficient screening tool in rural
settings.

Several mobile health tools are available for AF screen-
ing, including photoplethysmography (PPG), pulse variabil-
ity, and ECG-based devices. Each method has its limitations.
The majority of these tools have shown excellent discrimi-
native performance in detecting AF, with sensitivities and
specificities exceeding 90.0%, compared with the 12-lead
ECG, the diagnostic gold standard [3, 47]. While abnormal
results from PPG or pulse variability devices cannot con-
firm an AF diagnosis, further confirmation through methods
such as the 12-lead ECG or longer-duration ECG record-
ing devices is necessary. Paroxysmal AF may not always be
detected during these confirmatory tests, which may neces-
sitate repeat examinations. In contrast, ECG-based devices,
such as the 30 s single lead ECG or the 10 s 12-lead ECG,
can serve as both screening tools and confirmatory tests.
Healthcare professionals can diagnose AF based on screen-
ing test results, allowing for the immediate initiation of
anticoagulant therapy. The 12-lead ECG has demonstrated
superior performance in detecting AF compared with the
single lead ECG. Advancements in Al technology have
enabled Al-enhanced 12-lead ECGs to identify arrhythmias
at a level comparable to that of cardiologists [11]. While
screening with ECG poses minimal harm to participants,
abnormal results may cause anxiety, and misinterpretation
could lead to unnecessary further examinations and treat-
ments [5]. Therefore, the use of an accurate screening tool,
such as Al-enhanced 12-lead ECGs in our study, is essen-
tial for the effective and widespread implementation of AF
screening.

Previous research has established the cost-effectiveness
of systematic AF screening, although the screening meth-
ods and target populations have varied. Aronsson et al.
conducted a study comparing screening with a handheld
single-lead ECG to no screening in individuals aged 75 and
76, revealing a relatively low ICER of €4,365 [48]. Lyth
et al. examined screening using the handheld single-lead
ECG twice daily for two weeks against no screening in a
hypothetical population modeled after the STROKESTOP
trial [49]. This trial demonstrated a superior AF detection
rate with repeated single-lead ECGs, resulting in cost sav-
ings compared with no screening. These studies suggest that
AF screening is cost-effective compared with no screening,
aligning with conventional criteria and advocating for the
implementation of such screening programs to enhance
patient outcomes. However, approaches to AF screening
have differed across various regions and healthcare sys-
tems. Therefore, our study further evaluates the cost-effec-
tiveness of AI-ECG screening compared with physician-led

screening. AI-ECG screening is not only more effective
but also incurs lower costs than physician-led AF screen-
ing, with an ICER of $6,132 per QALY gained. Although
this ICER is relatively low in economic terms, the practical
challenges of implementing physician-led AF screening in
rural areas highlight the significance of AI-ECG screening.

Although AI-ECG screening may serve as alow-cost alter-
native to physician-led programs, successful referral after
a positive AI-ECG screening result is essential for ensur-
ing cost-effectiveness. Barriers to adequate AF care in rural
areas include the high cost of medication, limited awareness
of the importance of AF management, and restricted access
to medical resources when needed [50]. Patients with AF in
rural settings are less likely to receive comprehensive care,
such as regular outpatient follow-up and guideline-directed
anticoagulant therapy [51]. As a result, they more frequently
present to the emergency department with AF-related com-
plications and experience higher in-hospital mortality [S1].
Al-based tools integrated with telemedicine hold promise
for bridging disparities in AF care between rural and urban
populations; however, challenges such as inadequate infra-
structure and limited digital literacy must be overcome [52].
Initiatives promoting the adoption of novel technologies in
rural areas have the potential to reduce health inequities and
enhance the quality of AF care.

This study is subject to several limitations. First, the
transition probabilities in our economic model are derived
from clinical trials, which generally emphasize short-term
clinical outcomes within the initial years. Consequently,
extrapolating these results to predict long-term follow-up
outcomes may not accurately represent real-world scenar-
ios. Second, the observed risks of GI bleeding were similar
between patients on NOACs and those without treatment,
which is contrary to the expected increased bleeding risks
associated with NOACs. This discrepancy was considered
in our sensitivity analysis and was also noted in the cost-
effectiveness analysis of the STROKESTOP trial [53].
Third, in our model, patients who experienced a stroke or
ICH did not return to the baseline health state, as the risk
of recurrent events differs substantially from patients with-
out prior events. Although stroke and ICH were stratified
by functional severity (mild, moderate, severe, or fatal)
and assigned corresponding long-term utility values, this
approach may not fully capture the dynamic recovery pro-
cess that some patients undergo after the acute phase. Con-
sequently, utility may be slightly underestimated in patients
who experience functional improvement over time. Fourth,
the cost-effectiveness of AI-ECG screening for AF may be
influenced by several factors, including the referral rate
after a positive screening result, labor costs, anticoagula-
tion therapy rates, AF prevalence, and the sensitivity of the
AI-ECG model. Therefore, our results should be interpreted
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with caution when applied to different healthcare settings.
Finally, while repeated rhythm checks have been proven
to improve AF detection rates, our base strategy involved
only a single AI-ECG screening. This approach was cho-
sen to favor simplicity in rural areas with limited medical
resources. Future research is needed to evaluate the effec-
tiveness of consecutive or periodic AI-ECG screenings and
their potential for broader implementation.

In conclusion, our study emphasizes the potential of
AI-ECG model for universal AF screening in elderly indi-
viduals in rural areas, offering comparable effectiveness to
physician-led screening but at a lower cost, and remaining
cost-effective under the WTP benchmark of $32,327 per
QALY in Taiwan. This innovative technology could enhance
healthcare accessibility and reduce regional disparities.

Supplementary Information The online version  contains
supplementary material available at https://doi.org/10.1007/s10916-0
25-02287-9.
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